Conservation properties of multisymplectic integrators
نویسندگان
چکیده
Recent results on the local and global properties of multisymplectic discretizations of Hamiltonian PDEs are discussed. We consider multisymplectic (MS) schemes based on Fourier spectral approximations and show that, in addition to a MS conservation law, conservation laws related to linear symmetries of the PDE are preserved exactly. We compare spectral integrators (MS vs. non-symplectic) for the nonlinear Schrödinger (NLS) equation, focusing on their ability to preserve local conservation laws and global invariants, over long times. Using Lax-type nonlinear spectral diagnostics we find that the MS spectral method provides an improved resolution of complicated phase space structures.
منابع مشابه
On multisymplecticity of partitioned Runge–Kutta and splitting methods
Although Runge–Kutta and partitioned Runge–Kutta methods are known to formally satisfy discrete multisymplectic conservation laws when applied to multi-Hamiltonian PDEs, they do not always lead to well-defined numerical methods. We consider the case study of the nonlinear Schrödinger equation in detail, for which the previously known multisymplectic integrators are fully implicit and based on t...
متن کاملOn the multisymplecticity of partitioned Runge-Kutta and splitting methods
Although Runge–Kutta and partitioned Runge–Kutta methods are known to formally satisfy discrete multisymplectic conservation laws when applied to multi-Hamiltonian PDEs, they do not always lead to well-defined numerical methods. We consider the case study of the nonlinear Schrödinger equation in detail, for which the previously known multisymplectic integrators are fully implicit and based on t...
متن کاملMultisymplectic Geometry, Variational Integrators, and Nonlinear PDEs
This paper presents a geometric-variational approach to continuous and discrete mechanics and field theories. Using multisymplectic geometry, we show that the existence of the fundamental geometric structures as well as their preservation along solutions can be obtained directly from the variational principle. In particular, we prove that a unique multisymplectic structure is obtained by taking...
متن کاملMultisymplectic formulation of fluid dynamics using the inverse map
We construct multisymplectic formulations of fluid dynamics using the inverse of the Lagrangian path map. This inverse map – the “back-to-labels” map – gives the initial Lagrangian label of the fluid particle that currently occupies each Eulerian position. Explicitly enforcing the condition that the fluid particles carry their labels with the flow in Hamilton’s principle leads to our multisympl...
متن کاملConservation of phase space properties using exponential integrators on the cubic Schrödinger equation
preprint numerics no. 1/2006 norwegian university of science and technology trondheim, norway The cubic nonlinear Schrödinger (nls) equation with periodic boundary conditions is solvable using Inverse Spectral Theory. The " nonlinear " spectrum of the associated Lax pair reveals topological properties of the nls phase space that are difficult to assess by other means. In this paper we use the i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Future Generation Comp. Syst.
دوره 22 شماره
صفحات -
تاریخ انتشار 2006